Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3872, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365839

RESUMO

Hemigraphis alternata (H. alternata), commonly known as Red Flame Ivy, is widely recognized for its wound healing capabilities. However, the pharmacologically active plant components and their mechanisms of action in wound healing are yet to be determined. This study presents the mass spectrometry-based global metabolite profiling of aqueous and ethanolic extract of H. alternata leaves. The analysis identified 2285 metabolites from 24,203 spectra obtained in both positive and negative polarities. The identified metabolites were classified under ketones, carboxylic acids, primary aliphatic amines, steroids and steroid derivatives. We performed network pharmacology analysis to explore metabolite-protein interactions and identified 124 human proteins as targets for H. alternata metabolites. Among these, several of them were implicated in wound healing including prothrombin (F2), alpha-2A adrenergic receptor (ADRA2A) and fibroblast growth factor receptor 1 (FGFR1). Gene ontology analysis of target proteins enriched cellular functions related to glucose metabolic process, platelet activation, membrane organization and response to wounding. Additionally, pathway enrichment analysis revealed potential molecular network involved in wound healing. Moreover, in-silico docking analysis showed strong binding energy between H. alternata metabolites with identified protein targets (F2 and PTPN11). Furthermore, the key metabolites involved in wound healing were further validated by multiple reaction monitoring-based targeted analysis.


Assuntos
Ativação Plaquetária , Cicatrização , Humanos , Cicatrização/fisiologia , Metabolômica , Folhas de Planta/química , Simulação de Acoplamento Molecular
2.
J Cell Commun Signal ; 17(3): 1105-1111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37014471

RESUMO

Trophoblast cell surface antigen 2 (TROP2) is a calcium-transducing transmembrane protein mainly involved in embryo development. The aberrant expression of TROP2 is observed in numerous cancers, including triple-negative breast cancer, gastric, colorectal, pancreatic, squamous cell carcinoma of the oral cavity, and prostate cancers. The main signaling pathways mediated by TROP2 are calcium signaling, PI3K/AKT, JAK/STAT, MAPKs, and ß-catenin signaling. However, collective information about the TROP2-mediated signaling pathway is not available for visualization or analysis. In this study, we constructed a TROP2 signaling map with respect to its role in different cancers. The data curation was done manually by following the NetPath annotation criteria. The described map consists of different molecular events, including 8 activation/inhibition, 16 enzyme catalysis, 19 gene regulations, 12 molecular associations, 39 induced-protein expressions, and 2 protein translocation. The data of the TROP2 pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5300 ). Development of TROP2 signaling pathway map.

3.
Phytother Res ; 36(5): 2207-2222, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307886

RESUMO

Parkinson's disease (PD) is an age-associated progressive neurodegenerative movement disorder, and its management strategies are known to cause complications with prolonged usage. We aimed to explore the neuroprotective mechanism of the Indian traditional medicine Yashtimadhu, prepared from the dried roots of Glycyrrhiza glabra L. (licorice) in the rotenone-induced cellular model of PD. Retinoic acid-differentiated IMR-32 cells were treated with rotenone (PD model) and Yashtimadhu extract. Mass spectrometry-based untargeted and targeted metabolomic profiling was carried out to discover altered metabolites. The untargeted metabolomics analysis highlighted the rotenone-induced dysregulation and Yashtimadhu-mediated restoration of metabolites involved in the metabolism of nucleic acids, amino acids, lipids, and citric acid cycle. Targeted validation of citric acid cycle metabolites showed decreased α-ketoglutarate and succinate with rotenone treatment and rescued by Yashtimadhu co-treatment. The dysregulation of the citric acid cycle by rotenone-induced energetic stress via dysregulation of the mTORC1-AMPK1 axis was prevented by Yashtimadhu. Yashtimadhu co-treatment restored rotenone-induced ATG7-dependent autophagy and eventually caspases-mediated cell death. Our analysis links the metabolic alterations modulating energy stress and autophagy, which underlies the Yashtimadhu-mediated neuroprotection in the rotenone-induced cellular model of PD.


Assuntos
Glycyrrhiza , Fármacos Neuroprotetores , Doença de Parkinson , Autofagia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolômica , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...